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Abstract—In this paper, different approaches are 

discussed for medical image segmentation. These are 

based on thresholding, learning, modeling and automatic 

fuzzy method. Segmentation techniques, discussed under 

these approaches are used in different applications. In 

identification of brain lesions, vessel lumen segmentation 

and histopathology cancer image segmentation. Further 

used in tissue segmentation based upon image processing 

chain optimization, combining graph cut and oriented 

Active Appearance Model (AAM) and in brain image 

segmentation by using fuzzy symmetry. These techniques 

overcome various limitations of conventional medical 

image segmentation techniques. 
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I. INTRODUCTION

Image segmentation is the process of partitioning a 

digital image into multiple segments or sets of pixels, 

which are also known as super pixels. Basically 

segmentation is used to simplify and/or analyze images 

[1] [2]. Image segmentation is typically used to locate 

objects and boundaries (lines, curves, etc.) in images. In 

image segmentation process a label is assigned to every 

pixel in an image and pixels with the same label share 

certain characteristics. Set of segments obtained as a 

result of image segmentation and these segments 

collectively cover the entire image. Image segmentation 

using thresholding was not satisfactory in medical 

imaging. Due to the high dimensionality of the image 

relative to smaller sample sizes direct estimation of the 

statistical variation of the entire volumetric image was 

challenged, vascular segmentation was not easily 

possible and automated reconstruction of cortical 

surface was also the most challenging problem in the 

analysis of human brain Magnetic Resonance Imaging 

(MRI). Labeling a histopathology image as having 

cancerous regions or not was a critical task in cancer 

diagnosis. Only 2D models were used, 3D models were 

not compatible in medical imaging. 

II. THRESHOLDING BASED SEGMENTATION

Thresholding based segmentation, in which one 

threshold value is used to select the area of interest and 

this threshold value can be selected by using prior 

knowledge or from image information. Further threshold 

approach can be edge based, region based or hybrid. In 

edge based approach, edge information is required. 

Canny edge detector and Laplacian edge detectors work 

on this approach. Canny edge detector uses the threshold 

of gradient magnitude to find the potential edge pixels 

and suppresses them through the procedures of the non -

maximal suppression and hysteresis thresholding. In this, 

the detected edges are consisted of discrete pixels, may 

be incomplete or discontinuous. So, it is necessary to 

apply post-processing like morphological operation to 

connect the breaks or eliminate the holes. Pixels inside a 

structure tend to have similar intensities and from this 

observation idea of region-based algorithms developed. 

Region growing algorithm is a typical algorithm of this 

type. In this algorithm firstly initial seeds are selected 

then it search for the neighbored pixels whose intensities 

are inside the intervals defined by the thresholds and then 

merge them to expand the regions. Statistical information 

and a priori knowledge can be incorporated to the 

algorithms to eliminate the dependence on initial seeds 

and make the algorithm automatic. For example, a 

homogeneity criterion was introduced in [3], which made 

the region growing algorithms adaptive for the different 

locations of initial seeds.  

These algorithms mainly rely on the image 

intensity information, so they are hard to handle the 

partial volume effects and control the leakage. 

Watershed algorithms are typical example of this 

algorithm [4], which combines the image intensity with 

the gradient information. In this algorithm, gray scale 

images are considered as reliefs and the gradient 

magnitude of each pixel is treated as elevation. 

Watershed lines are defined to as the pixels with local 

maximum of gradient magnitude. Segmentation 

procedure is used to construct watersheds during the 

successive flooding of the gray value relief. Watershed 

algorithms can achieve better results due to the 

combination of image information, but when the images 

are noisy or the objects themselves have low signal-to-

noise ratio these algorithms tend to over-segmentation. 

Hybrid threshold-based algorithms can further combine 

with other techniques to perform the segmentation [5]. 

Due to the noise influence and partial volume effect 

algorithms based on threshold are seldom used alone 

because the edges of organs or structures in medical 

images are usually not clearly defined. 

III. LEARNING BASED SEGMENTATION

In learning based approach, there may be use of 

statistical learning, supervised, unsupervised, can be 

weakly supervised also. Techniques based upon this 

approach are following 
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construction, and at the same time one of the major 

factors influencing model quality (the other one being 

the local gray-value appearances).After construction the 

model is fitted to new, previously unseen data. For this 

purpose, a model of the appearance of the structure of 

interest is required to be trained from sample data, due 

to the large size of the search space in 3D, most 

methods applied to locate an SSM in new image data 

use local search algorithms that require an initial 

estimate of the model pose.

B. Medical Image Segmentation by Combining Graph 

Cuts and Oriented Active Appearance Models 

This method is combination of active appearance 

model (AAM), Live Wire (LW) and Graph Cuts (GCs) 

for abdominal 3D segmentation of organs. This method 

consists of two phases training and segmentation. In 

training phase AAM algorithm is constructed and LW 

boundary cost functions and GC parameters are 

estimated, and segmentation phase consists two main 

parts recognition or initialization and delineation [11]. 

In the recognition step, a pseudo-3-D initialization 

strategy is employed in which the pose of the organs is 

estimated slice by slice via a multi object OAAM 

(MOAAM) method. In the delineation part object shape 

information generated from the initialization step is 

integrated into GC cost computation. 

C. Fuzzy C-Mean (FCM) Method for Segmentation of 

Brain MRI Image 

In this method, with the help of Self Organizing 

Map(SOM) clustering algorithm initial cluster centers 

are selected, after many iterations of this algorithm final 

cluster centre is obtained. The winning neural units and 

their corresponding weight vectors from each layer result 

in an abstraction tree. A particular region of the image at 

a certain level of abstraction is represented with one node 

of this abstraction tree [12]. Under this segmentation is 

performed on demand by transverseing the abstraction 

tree in Breadth-First Search(BFS) manner starting from 

root node until certain criteria is satisfied. If the sum of 

variances of weight vector divided by size of weight 

vectors is less than element of weight vector if the size of 

abstraction tree is expanded else the node is labeled as 

closed node and regions corresponds to closed nodes 

constitute a segmented image.  

D. LVQ Method for Segmentation of Brain MRI Image 

Linear Vector Quantization (LVQ) technique is 

supervised learning technique obtain decision 

boundaries based upon training data .In this method 

three layers are there input, competitive and output 

layer [12]. Input data is classified in the competitive 

layer and then those classes or patterns are mapped to 

the target class in the output layer, under this winner 

neuron is selected based upon the Euclidean distance 

then weights of this winner neurons can be adjusted by 

using different algorithms.  

E. SOM and Hybrid SOM Method for Segmentation of 

Brain MRI Image 

In SOM method, firstly find the winning neuron 

and secondly updating weight of the neuron and its 

neighboring pixels based upon input [12]. Hybrid SOM 

combines self organization and topographic mapping 

technique.

F. Markov Random Field (MRF) Model and Fast 

Fourier Transform (FFT) Based Segmentation for 
Segmentation of Brain MRI Image 

In Markov Random Field model neighborhood 

information is used, because most neighborhood pixels 

are in same class as a result influence of noise 

decreased [12]. FFT based segmentation used in brain 

segmentation because in all tumors boundaries between 

active and necrotic part are not clear, for this radix 4 

FFT partitions Discrete Fourier Transform (DFT) into 

four quarter length DFT's of groups of every fourth time 

sample, total computational cost reduced by these FFT 

outputs which are reused for computing the output. 

G. Tissue Segmentation in Medical Images Based on 

Image Processing Chain Optimization 

Differential evolution method is purposed to 
optimize an image processing chain .In this method 
training is based upon three sample images provided by 
an expert [13]. Mainly Differential Evolution(DE) 
method is population based optimization method, idea 
behind DE is generating trial parameter vectors, for 
every vector in the population, DE selects randomly 
two other vectors, subtract them and add the weighted 
difference to randomly chosen third vector(base vector) 
to produce mutant vector, cross over rate (user defined 
value) is used for every vector in mutant population to 
control the fraction of parameter values that are copied 
from the mutant and target vector to trial vector, if trial 
vector have equal or lower fitness value than that of its 
target vector, then it replaces the target vector in next 
generation, otherwise target retain its place for at least 
one more generation, steps are repeated for every vector 
in population to generate new population.  

This method trying to overlap gold images by well 

known images generated by experts and images 

processed with this technique. 

V. AUTOMATIC FUZZY APPROACH 

FOR SEGMENTATION

A. MRI Brain Image Segmentation by Fuzzy Symmetry 

Based Genetic Clustering Technique 

Automatic segmentation technique of MRI of brain 

using new fuzzy point symmetry based genetic 

clustering technique is proposed, which is able to 
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evolve the number of clusters present in the data set 

automatically [14]. In this assignment of points to 

clusters are based on point symmetry based distance 

rather than the Euclidean distance and because of this, 

proposed algorithm Fuzzy Variable string length 

Genetic Point Symmetry(Fuzzy VGAPS) enable to 

identify any type of cluster irrespective of its shape size 

convexity and this method automatically evolve the 

clusters.

VI. CONCLUSION

In this paper, various segmentation techniques 

applied for medical images are briefly explained. All 

the discussed techniques overcome various limitations 

occurred in medical image segmentation like direct 

estimation of the statistical variation of the entire 

volumetric image, vascular segmentation and in the 

analysis of human brain magnetic resonance 

imaging(MRI) automated reconstruction of cortical 

surface was the most challenging problem. Labeling a 

histopathology image as having cancerous regions or 

not was a critical task in cancer diagnosis. 3D models 

were not compatible in medical imaging. Performance 

of these medical image segmentation techniques can be 

improved in future by incorporating many more images 

from healthy subjects into the models, by the design of 

new sequential combinations of different methods, for 

more optimization many algorithm can be added in pre 

and post processing phases, combination of graph cut 

and OAAM can be improved by introducing 

parallelization and by incorporating the spatial 

information. 
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