
Mininet as Software Defined Networking

Testing Platform

Karamjeet Kaur1, Japinder Singh2 and Navtej Singh Ghumman3

1,2,3Department of Computer Science and Engineering,
Shaheed Bhagat Singh State Technical Campus, Ferozepur, India

E-mail: 1bhullar1991@gmail.com, 2japitaneja@gmail.com, 3navtejghumman@yahoo.com

Abstract—Mininet is an emulator for deploying large

networks on the limited resources of a simple single

Computer or Virtual Machine. Mininet has been created

for enabling research in Software Defined Networking

(SDN) and OpenFlow. Mininet emulator allows running

unmodified code interactively on virtual hardware on a

simple PC. It provides convenience and realism at very

low cost. The alternative to Mininet is hardware test beds

which are fast, accurate but very expensive and shared.

The other option is to use simulator which is very cheap

but sometimes slow and require code modification.

Mininet offers ease of use, performance accuracy and

scalability.

Keywords: Mininet, SDN, OpenFlow

I. INTRODUCTION

There is need to model hosts, switches, links and

SDN/OpenFlow controllers. Mininet [1] allows creating

topologies of very large scale size up to thousands of

nodes and perform test on them very easily. It has very

simple command line tools and API. Mininet allows the

user to easily create, customize, share and test SDN

networks. (Fig. 1).

Fig. 1 Emulating Real Networks in Mininet

Mininet is freely available open source software

that emulates OpenFlow devices and SDN controllers.

Mininet can simulates SDN networks, can run a

controller for experiments [2]. It allows emulating real

world network scenarios Couple of SDN controllers are

included with in Mininet VM. The default controllers

are good but for implementing advance concepts, POX

[3] controller is used.

II. SDN AND OPEN FLOW

In traditional networks [4], the data plane and the

control plane are tightly coupled on the same device

(Fig. 2). Therefore in traditional networks, development

of new applications and modification in behavior of

existing devices is very difficult task. Software Defined

networking (SDN) [5] overcomes these problems by

shifting the control logic from devices to the centralized

place. The shifted control logic is called SDN

Controller or Network Operating System (NOS) [6].

The controller has a global view of the entire network,

Therefore by using SDN you can manage the

functionality of network in a very efficient manner.

Fig. 2 Separate Control and Data Plane

Open Flow [7] is a standard protocol that is used to

provide a communication between controller and dumb

device. The controller and dumb devices are called

control plane and data plane respectively. The Open

Flow controller is responsible for deciding which action

is to be performed by the switch. The decision approach

is either Reactive or Proactive.

In the Reactive approach, when a packet arrives at

a switch, switch does not know how to handle that

packet. Therefore switch sends the packet to the

controller [8]. Controller is responsible for inserting a

flow entry into the flow table of a switch using the

openflow protocol. The main disadvantage of this

approach is that switch is totally dependent upon

controller decision. So when a switch loses the

connection with the controller, it cannot handle that

packet.

In the Proactive approach [9], the controller pre

populates the flow entries in the flow tables of each

switch. This approach overcomes the limitation of

reactive approach because even if the switch loses the

connection with controller, it does not disrupt traffic.

The main advantages of SDN over traditional

approach are that it allows you to quickly test and

deploy new applications in real network, minimize

capital and operating expenses and allows centralized

management of each switch.

International Conference on Communication, Computing & Systems (ICCCS–2014)

140

III. MININET TOPOLOGIES

Mininet contains number of default topologies such
as minimal, single, reversed, linear and tree [10]. This
section explains these topologies one by one.
Understanding naming method for interfaces, hosts and
switches is essential for prospering using Mininet.
Switches are named from s1 to sN. Hosts are named h1
to hN. Host interfaces are named prefixed with host’s
name following by Ethernet name starting with 0. First
interface of host ‘h1’ is called ‘h1-eth0’ and third
interface of host ‘h2’ is called ‘h2-eth2’. First port of
switch ‘s1’ is named ‘s1-eth1’. In switches, numbering
begins with 1.

A. Minimal

Minimal is very simple topology that contains 1
OpenFlow switch and 2 hosts. It also creates links
between switch and two hosts (Fig. 3).

mn--topo minimal

Fig. 3 Minimal Topology

B. Single

It is a simple topology with one openflow switch
and k hosts. It also creates a link between switch and k
hosts (Fig. 4).

mn--topo single, 4

Fig. 4 Single Topology

C. Reversed

It is similar to single topology but connection order

is reversed (Fig. 5).

Fig. 5 Reversed Topology

mn--topo reversed, 4

D. Linear

Linear topology contains k switches and k hosts. It

also creates a link between each switch and each host

and among the switches (Fig. 6).

Fig. 6 Linear Topology

mn--topo linear, 4

E. Tree

Tree topology contains k levels and 2 hosts are

attached to per switch (Fig. 7).

Fig. 7 Tree Topology

mn--topo tree, 3

Mininet as Software Defined Networking Testing Platform

141

IV. CREATING CUSTOM TOPOLOGIES

Using Mininet, you can easily create a custom

topologies [11]. For example creating custom topology

having 2 switches and 5 hosts (Fig. 8) needs just writing

a few lines of Python [12] code. You can also easily

create very complex flexible, robust. You can also

configured that topology based on the parameters that

are to be pass to it, and reuse that topology for multiple

experiments.

Fig. 8 Custom Topology

In the following Listing 1 contain Python code for

creating custom topology having 2 switches and 5

hosts. This topology is run in Mininet by using

following command.

Python CustomTopologyPerformance.py

Listing 1 Custom Topology Code

There are number of classes, functions, methods

and variables in the Listing 1

1. Topo: It is a base class for Mininet topologies.

2. Add Host (name, cpu = f): It is used for adding

a host to the topology which contains two

parameters. First parameter specifies the name

of host and second specifies the fraction of

overall system CPU resources that is to be

allocated to the virtual host.

3. Add Switch(): It is used for adding a switch to

the topology and returns the switch name, for

example s1.

4. Add Link (node1, node2, **link options): It is

used for adding a bidirectional link which

contains three parameters. The first, second

parameter specify the host and switch name

respectively and third parameter specify the

dictionary that contain number of options such

as bandwidth, delay and loss characteristics,

with a maximum queue size.

5. start(): It is used for starting your network.

6. stop(): It is used for stopping your network.

7. Mininet: It is used as a main class to create and

manage a network.

8. net. hosts: It is used to show all the hosts in

network.

9. ping All (): This is used to check connectivity

between all nodes.

10. Set Log Level: There are number of Log Level

such as info, debug, and output. Info is

recommended as it provides useful

information.

11. Dump Node Connections (): Dumps

connections to/from a set of nodes.

There are basically two classes available such as

CPU Limited Host and TC Link that can be used for

performance limiting and isolation.

There are number of ways that these classes may be

used, but simple way is to specify them as the default

host and link classes to Mininet(), and then to apply the

appropriate parameters in the topology.

V. CONTROLLING DEFAULT TOPOLOGY WITH

DPCTL

This topology (Fig. 9) creates 1 switch and 3 hosts.

The option 'mac' set the mac address of each host

according to node number and option 'remote' is to be

used to connect switch to remote controller. As shown,

hosts can not ping with each other because remote

controller is not running, therefore flow table of switch

does not contain any flow entry.

Fig. 9 Single Switch, 3 Hosts Topology

There are two methods to add flow entries into

flow table of switch, remote controller and 'dpctl' [13]

utility that works on port 6634 (Fig. 10). dpctl is a data

International Conference on Communication, Computing & Systems (ICCCS–2014)

142

path controller that comes with OpenFlow reference

distribution and is used to manage the flow table of

switch by using 'dpctl' commands. After adding flow

entries by using ‘dpctl’ command, the host h1 and h2

can ping with each other (Fig. 11).

Fig. 10 Flow Management Using DPCTL

Default idle timeout of each flow entry is 60s.

Therefore after 60 seconds, flow entries will expire and

needs to be added again and again. So installs a flow

entry with longer timeout using following command:

dpctl add-flow tcp:127.0.0.1:6634 in_port = 1,

idle_timeout = 180, actions = output:2

Fig. 11 Connectivity Test

VI. CONCLUSION

Mininet is a platform for rapid network

prototyping. It can run unmodified network application

code on small networks as well as very large networks.

It is an alternative to run SDN experiments on emulated

networks. Real systems are very painful to reconfigure.

Virtual machines allow easier topology changes but

suffer from scalability issues. Simulators are a good

alternative but same source code cannot be deployed on

real hardware. There are performance issues on

Mininet. The challenges before Mininet are to model

networks of very large scale with practical performance.

ACKNOWLEDGMENT

The authors would like to thank Mr. Vipin Gupta

from U-Net Solutions, Moga, India for his valuable help.

REFERENCES

[1] Handigol, Nikhil, Brandon Heller, Vimal kumar, Jeya kumar,

Bob Lantz, and Nick McKeown. "Reproducible network

experiments using container-based emulation." In Proceedings

of the 8th international conference on Emerging networking

experiments and technologies, pp. 253–264. ACM, 2012.

[2] Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in

a laptop: rapid prototyping for software-defined networks." In

Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks, pp. 19. ACM, 2010.

[3] POX at https://openflow.stanford.edu/display/ONL/POX+Wiki#

POXWiki-forwarding.l2_learnining.

[4] Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road

to SDN: an intellectual history of programmable networks."

ACM SIGCOMM Computer Communication Review 44, No. 2

(2014): 87–98.

[5] Nunes, B.; Mendonca, M.; Nguyen, X.; Obraczka, K.; Turletti,

T., "A Survey of Software-Defined Networking: Past, Present,

and Future of Programmable Networks," Communications

Surveys & Tutorials, IEEE, Vol. 1, No.99, pp. 18.

[6] Shenker, Scott, M. Casado, T. Koponen, and N. McKeown.

"The future of networking, and the past of protocols." Open

Networking Summit (2011).

[7] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru

Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and

Jonathan Turner. "OpenFlow: enabling innovation in campus

networks." ACM SIGCOMM Computer Communication Review

38, No. 2 (2008): 69–74.

[8] Fernandez, Marcial P. "Comparing openflow controller

paradigms scalability: Reactive and proactive." In Advanced

Information Networking and Applications (AINA), 2013 IEEE

27th International Conference on, pp. 1009–1016. IEEE, 2013.

[9] Fernandez, Marcial. "Evaluating OpenFlow Controller

Paradigms." In ICN 2013, The Twelfth International Conference

on Networks, pp. 151–157. 2013.

[10] Mininet Topologies at

http://www.routereflector.com/2013/11/mini net-as-an-sdn-test-

platform

[11] Mininet at

https://github.com/mininet/mininet/wiki/Introduction-to-

mininet.

[12] Python at https://www.python.org/.

[13] dpctl at

http://archive.openflow.org/wk/index.php/HOTITutorial2010.

